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Critical Behavior of Noninteracting Spin Waves 
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Monte Carlo techniques are used to show that a free-spin-wave theory of the 
quantum Heisenberg spin-l/2 ferromagnet, formulated to accurately represent 
the state space of the underlying system, predicts the critical temperature of the 
interacting theory to within 1% and critical exponents to within a factor of two. 

1. I N T R O D U C T I O N  

In an earlier paper  (Stoller, 1987a) (referred to as I), I derived a 
spin-wave theory that embodies the correct free-spin-wave statistics at all 
temperatures. It was asserted that this corrected form of free-spin-wave 
theory would provide a means e f  extending perturbation theory beyond the 
low-temperature region. In order to substantiate this claim, it is necessary 
to show that free-spin-wave theory, without any interactions, produces 
reasonably accurate predictions of  long-wavelength phenomena at all tem- 
peratures. In a second paper  (Stoller, 1987b) (referred to as II)  I showed 
that this theory reproduces the Bloch T 3/2 law for the magnetization and 
the boson distribution for the density of states in k space at low temperatures. 
This paper  presents the results of  applying free-spin-wave theory at critical 
temperatures.  

Previous work (Dyson, 1956a,b; Silberglitt and Harris, 1968; Wortis, 
1965; Vaks et al., 1968) using spin waves has used the boson distribution 
function as a free-particle propagator.  While theoretical arguments and 
experimental data validate this approximation at low temperatures,  the 
divergent behavior of  the boson distribution precludes its use at higher 
temperatures. This means that even though interactions between long- 
wavelength spin waves remain weak at all temperatures,  the boson distribu- 
tion places an inherent limitation on the use of perturbation theory. This 
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is independent from the problem of strong spin-wave coupling at short 
wavelengths. Because of the boson distribution, we cannot use perturbation 
theory to approach problems dominated by long-wavelength modes if these 
problems occur away from T ~ 0. With an accurate distribution function it 
should be possible to extend thermal perturbation theory to higher tem- 
peratures. Perturbation theory will still be limited to the consideration of 
long-wavelength phenomena. 

In Sections 2.1 and 2.2, respectively, I develop the analytic quantities 
used to describe critical phenomena, and then the form of the Monte Carlo 
simulation in Fock space. In Section 3 the problem is reformulated as a 
fully bosonic system with a nonlocal potential so as to be more amenable 
to the Monte Carlo technique. The results of the simulations, the values of 
To, and the critical exponents are given in Section 4, conclusions are in 
Section 5, and details of the implementation and optimization of the Monte 
Carlo algorithm are in the Appendix. 

2. CRITICAL BEHAVIOR 

2.1. The Calculation of Critical Quantities 

I compute the bulk magnetic order and the bulk susceptibility of a 
three-dimensional Heisenberg ferromagnet in the free-spin-wave approxi- 
mation given in I. The sum over a restricted set of states developed in I 
was amended in II to embody the reflection symmetry about the z axis of 
the state space. It was shown that for the computation of the magnetization 
and susceptibility the thermal average taken over m-spin-wave states for 
m = O , . . . ,  N a must be identical to that taken over m = O , . . . ,  N a / 2 .  If  ~) 
is a magnetization or susceptibility operator, the resulting expectation values 
for d = 3 are of the form 

N3/2 

E 2 (6)) e -~E(| 
^ m=0  {qO(m)} 

( 0 ) ~ -  N3/2 
E E e-~ 

rn=0 {q~(m)} 

The bulk magnetic order is given by the thermal expectation value of 
the absolute magnetization IMI-= ((1VI2)) 1/2. One must compute IMI rather 
than the z component of the magnetization, because (M z) is unstable in 
finite systems in the absence of an external magnetic field. This instability 
causes (l~l z) to fluctuate about zero and equilibrate to zero even in the 
spontaneously ordered regime. The expectation value of M x'y'z is txB times 
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6 x'y'z, where 6 x'y'z is the x, y, or z component of the total spin operator 6 ;  
A 6x'Y'Z = E S;  "y'z 

J 

where ~x,y,~ = (h/2)o_X.y,z, and o -~'y'z are the Pauli matrices. 
For any m-spin-wave state, I~{n}>, where {n} = {nk~, nk2, �9 �9 .} gives the 

occupation numbers at different wavenumbers and Y~jn(k j )=m,  the 
expectation value of the total spin squared, is 

<~{n}1621~{n}> = 62ax-- A(N d A- 1 -A)----<62{n}) (1) 

A is the number of spin waves excited at nonzero wave vector, A = ~kr nk, 
and 2 6max = ( N a / 2 ) [ ( N a / 2 ) + I ]  is the value of 62 evaluated in the fully 
ordered ground state, [0>, of the Na-site system. [M[t~ is given by 

IMI, = Z- '  E (~[{6~max--(~ ~ n k ) I N +  1 - ( ~ o  n k ) ] }  1/2e-~/~[~o)~B 

Using the fluctuation-dissipation theorem, we define the susceptibility 

X as 

X = (N/kBT)[(I~I2)~ - IMI~]  (2) 

Thermal averages are computed using two different models of the state 
space. The first, called the fixed-cutoff model, is a simplified version of the 
correct state space. In this model the only restriction on the system is that 
it contain no more than N a / 2  spin-wave excitations. The model does not 
introduce a density-dependent k-space cutoff as in the next model. The 
fixed-cutoff space is overcomplete, containing more high-energy degrees of 
freedom than in an exact formulation (over completeness is discussed in I). 

The fixed-cutoff model is presented for two reasons. First, by comparing 
the critical properties of this and the second model with the known values 
for the interacting system we can see how improvements in the model affect 
the results. Second, exact results for the magnetization and susceptibility 
of the three-cube can be obtained using the fixed-cutoff model. This supplies 
a check of the Monte Carlo simulation. 

The second model is called the free-spin-wave model, or spin-wave 
model for short. It is a realization of the correct state space, as given in I 
and II, and is constructed to allow analysis using the Monte Carlo method. 
This model achieves a complete set of spin-wave states by forbidding spin 
waves from occupying a density-dependent number of short-wavelength 
modes. Specifically, the state space does not include states with spin-wave 
excitations at wavenumbers IkX'Y'~l > Q ( m ) / 2 ,  where 

O ( m ) / 2  = ( N ~ - m) ' /3 /2  (3) 

Equation (3) is strictly valid only in the thermodynamic limit. In applying 
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it to a finite system, one runs into the problem that wavenumbers take 
integer values, whereas the cutoff given by (3) is essentially noninteger. An 
interpolation scheme is used to obtain integer values of Q(m).  This generates 
errors in the size of  the state space that vanish as 1/N. This is discussed 
further in the Appendix. In both models the symmetry of the state space 
about the x-y  plane makes it necessary to consider only the subset of  m 
spin waves for m less than Nd/2,  as discussed in II. 

Both models impose global conditions on the state space. This is 
apparent  in the range of nk, the number of  spin waves at k, which is a 
function of nk at all values of  k. As a consequence, the total state space in 
the second quantized picture cannot be constructed as a product of  factors 
localized in k space. This is in contrast with a noninteracting Bose space, 
which contains all allowable excitation numbers nk without regard to the 
occupation numbers at other wavelengths. 

The global properties expressed in free-spin-wave theory imply a non- 
separable wave func t ion- -a  consequence of wavefunction symmetry par- 
ticular to SU(2).  The zeroth-order particle approximation embodies an 
interaction that is kinematic in origin. This is analogous to the statistical 
repulsion that fermions experience as a consequence of the exclusion 
principle. In this sense, then, the spin-wave distribution given in equation 
(3) is not a completely independent particle theory, though its dynamics is 
governed by a noninteracting Hamiltonian. The name "free spin-wave 
theory" is retained with this caveat implicitly understood. 

2.2. The Monte Carlo Method 

Monte Carlo simulations of quantum systems usually involve the Trot- 
ter product formula (Suzuki et al., 1977). This approach transforms a 
d-dimensional quantum system into a (d + 1)-dimensional classical prob- 
lem, which can be analyzed using standard Monte Carlo methods. The 
Trotter method is not used here. I have instead applied the Monte Carlo 
algorithm to states defined on a d-dimensional Fock space. Because of the 
novelty of  this approach,  it will be described in detail. 

The object of  the Monte Carlo method (Wood, 1968; Valleau and 
Torrie, 1977a; Valleau and Whittington, 1977b) is to construct a relatively 
small set of  states such that the sum of contributions to the expectation 
value from these states approximately equals the thermal average. This set, 
which I call the Monte Carlo set or sequence, is constructed by an iterative 
process whereby one starts with a given state and from this generates another 
state at random. The resultant state is tested according to criteria that reflect 
the population of states given by the thermal average. It is either accepted 
or rejected as the next member  of  the set. I f  it is accepted, it becomes the 
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seed for subsequent modifications; if it is rejected, its parent state is dupli- 
cated as the next member of the set and is used again as the seed of the 
next modification. The way in which a subsequent state in the set is generated 
from a given state is determined by the general updating algorithm I now 
describe. 

The first step in the general updating algorithm is to construct a new, 
untested state, given a state that is already a member of the Monte Carlo 
sequence. This is called updating the underlying Markov chain. If we define 
two labels for states--a superscript denoting the position of the state in the 
Monte Carlo sequence, and a subscript denoting the set of occupation 
numbers that fully characterize the state-- then updating the Markov chain 
is described as follows. Given the a th  state in the sequence ~ "  = ~i ,  a new 
state (Pj ~ ~i  is constructed from it. The probability function for generating 
state j from state i is defined as T*~j. I use the transition probability given 
by the Metropolis prescription where T*_~j is a constant for all states j # i 
that lie within some "radius" about i. In Fock space this radius is the 
maximum number of particles that can be added or subtracted from the 
occupation number of the previous state. For states j outside this radius, 
or f o r j  = i, the transition probability is zero. That is, for states ~j  that differ 
from ~ by more than some predetermined number of particles, or for 
�9 j = ~ ,  T*_~y = 0. 

The next step in the updating algorithm requires evaluating the accept- 
ance probability P~j  for the transition from state i to state j. The acceptance 
probability is given in terms of the weighting function Wi: 

[ P,_.j-=min 1, T*.jW~J (4) 

That is, P~oj is given by whichever of the two quantities in the paren- 
theses is less. In the Metropolis algorithm T*_~j = T~:~i, so the quotient of 
these factors is always one. It is standard to take Wj equal to the Boltzmann 
weighting exp[- /3E (qbj.)]. 

A random number R is then chosen between 0 and 1 and is compared 
with P~j.  If  R is less than or equal to P~_~j, then ~j is accepted as the next 
state in the Monte Carlo sequence, that is, q~"+~ = c~. If R is greater than 
P~_,j, then the next state in the sequence is the same as the previous state, 
qb ~+~ =qb~. 

Notice that in equation (4) if the weighting function Wj =0,  then 
P~j  =0. This means the transition probability T~j to state qbj is always 
zero from any state qb, for which W~ ~ 0. One can never reach states qbj 
even if they can be generated in the underlying Markov chain. Therefore, 
to exclude a portion of the parameter space, it is sufficient to associate a 
zero weighting for states that lie in that region. 



810 Stoiler 

3. NONLOCALITY OF THE ENERGY 

According to the above prescription, a new state ~'(nk,, nk2, �9 �9 n ~ j , .  ~ .) 
is generated from a given state ~(nk,,  n k z , . . . ,  n k j , . . . )  by changing the 
occupation number at wavenumber kj. The change in the occupation number 
is given by 

n'kj = nkj + In t (D.  (R+ [sign R])) (5) 

The function Int(x) takes the integer component of  a real number x. Here 
R is a random number between -1  and +1, and [sign R] is the sign of R. 
The quantity (R+[sign R]) is uniformly distributed between -2 ,  -1  and 
+1, +2. Here D is a free integer parameter that sets the range of Ink- n~l, 
and plays the role of the radius mentioned earlier. Equation (5) tell how 
the new state with n'kj # nkj is generated in the underlying Markov chain. 

The acceptance probability is computed to determine whether or not 
the new state is accepted, 

Pi~j ---- min[1, e-t3(E(% )-e(%))] (6) 

The implementation of the Monte Carlo scheme used here requires E((I)j) 
to be different from the energy given by free-spin-wave theory. Beginning 
with the simplest form for the energy, I will show that the restricted sum, 
which includes only valid spin-wave states, can ~be replaced with an unre- 
stricted sum if modifications are made to the form of E(dPj). The idea is 
to remove the constraints on the underlying Markov chain and reexpress 
them as an altered form of the weighting function. Once the underlying 
Markov chain is updated without constraints, this nonstandard system can 
be simulated using standard Monte Carlo methods. 

Begin by considering the case where E(cbi) is defined to be the sum 
of the noninteracting spin-wave energies ek: 

E(Op,) =2 nkek (7) 
k 

NOW consider the question of how to handle the boundaries of the 
state space. Suppose, in the fixed-cutoff model, one is given an a th  state 
in the Monte Carlo sequence such that ~P~ contains exactly Na/2 excitations. 
The updating scheme of equation (5) cannot be used if one wants to realize 
the condition that states containing more than Na/2 excitations are excluded 
from the Monte Carlo average. Equation (5) pays no attention to the total 
number of spin waves in the system and, if repeated enough times, will 
generate any value of nk, positive or negative. This can be corrected without 
altering equation (5). Instead, one can allow unphysical states to be construc- 
ted in the underlying chain, and then give them an infinite energy. Infinite- 
energy states will never be accepted and so will never be included in the 
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average. Accordingly, an additional term is amended to the free-spin-wave 
energy to enforce the maximum particle number  constraint. In the fixed- 
cutoff model this additional energy Vno.~oc,~(Cbj) is a function of the total 
excitation number  tarot. In the spin-wave model, Vnonzooa~(qbj) is a function 
of the number  of  excitations in the new state ~ j  at wavenumbers k any of 
whose components  [ka[ > Q(mtot)/2, for a = x, y, z. This number  of  states 
will be given by mtot(Q(m)). Previously no states were allowed with nonzero 
occupation numbers at ]k~l> Q(mtot)/2. They are now allowed in the 
underlying chain, but are given energies that make them thermodynamically 
inaccessible. For both models we have 

E(,~i) =Y n(k)~(k)+ Vnon~oc.~(x) (8) 
k 

where 

{ 0  if x = 0  
Vnontocal(x) = if x > 0 

where x equals either in to  t -  N/2 or mtot(Q(m)), depending on the model. 
Vnonloc,l(qb) is a nonlocal potential energy that can cause the energy to 

change an infinite amount  in response to the smallest variation in any of 
the parameters that characterize a state. Despite their initial appearance as 
being noninteracting, both of  these models embody strong spin-wave corre- 
lations that can be traced back to the statistical ansatz resolving the overcom- 
pleteness problem. 

Remove next the constraint that all states in the underlying Markov 
chain must have nonnegative occupation numbers. Since such states have 
no physical meaning, they are excluded by being accorded an additional 
energy ~k gstable(l'/k) that is zero for all nk-->0, and infinite for negative 
values. This fictitious potential does not represent any physical interaction 
between spin waves and is a necessity for the simulation of any system in 
Fock space. The final form of  the energy is 

E((~i)-~E nkEk"~- gnonlocal(X) ~-Z Vstable(t/k) 
k k 

(9) 

where 

O if nk-->0 
Vstable(nk)  = if n k < 0  

According to (6) and (9), any newly constructed state that does conform 
to the restrictions of  the complete spin-wave space is given an infinite energy 
and is rejected as the next state in the Monte Carlo sequence. Any state 
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with a finite energy lies within the restricted state space. 2 If  such a state 
has an energy greater than E(qbi), it is accepted or rejected depending on 
the comparison of Pi~j with a random number. I f  its energy is less than 
E (qbi), it is automatically accepted and becomes the next state in the Monte 
Carlo sequence. 

A full-system update is obtained after each occupation number  in the 
original state has been updated. After 7 full system updates have been 
performed, y_> 1 is some integral, the state is used to compute the next 
contribution to the Monte Carlo sum. 

The Fock space feature of  this Monte Carlo approach allows me to 
treat the quantum system much like any classical sys tem-- in  terms of a 
c-number "configuration." The analog of the classical configuration is the 
quantum state described in terms of (real) occupation numbers. In the case 
of  classical systems, discretization of the space introduces computational  
errors. In the quantum case, the discretization is an exact expression of the 
finite lattice structure. The Fock space description is practicable because 
the Hamiltonian is approximately diagonal in this space. 

4. CRITICAL TEMPERATURE,  AND THE M A G N E T I Z A T I O N  
AND SUSCEPTIBILITY EXPONENTS 

4.1. Finite-Size Data 

The magnetization and susceptibility of  systems of 3-, 5-, 7-, 9-, and 
13- or 15-cubed sites have been computed in the fixed-cutoff and spin-wave 
models. The results are given in Figures 1 and 2. The lengths of  the Monte 
Carlo sequences were chosen so as to achieve 1-2% expected accuracy in 
the susceptibility at its peak. Each sequence typically contained between 
10,000 and 50,000 full-system updates at each temperature. 

The value of T where the susceptibility reaches its peak is defined as 
the pseudo-critical temperature Tc(N) for a system of N 3 sites. The increas- 
ing height of  the maxima indicates a phase transition in the thermodynamic 
limit. 

The results do not exhibit critical slowing down (Binder, 1979) as 
occurs in position-space formulations of  Monte Carlo. To understand this, 
recall from scaling theory that critical phenomena  are strongly influenced 
by long-wavelength behavior. A single position-space update generates only 
a localized change in configuration. Large-scale collective behavior, in which 
distant parts of the System interact, requires that these coupling effects 
propagate across distance of order N. In order to get position-space Monte 
Carlo to reflect long-range effects, the length of the Monte Carlo chains 

2The actual implementation of the cutoff is more complicated than appears in equation (9) 
and is discussed further in the Appendix. 
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Monte Carlo results for the lowest order magnetization of a finite, three-dimensional 
Heisenberg ferromagnet: (a) Fixedcutoff model, (b) spin-wave model. 

must grow in proport ion to the size of  the system. This growth in the number  
of  updates to obtain equilibration over large scales generates the critical 
slowing-down phenomena.  

In wavenumber  space, on the other hand, each state is a superposition 
of nonlocalized excitations. Spinzwave states already embody correlations 
that extend over the size of  the system, so it is not necessary to wait for 
local effects to diffuse throughout the lattice. As a result, the simulation 
does not suffer this sort of  equilibration problem in the critical region. 

4.2. Extrapolation to Infinite Size 

According to finite-size scaling theory (Barber, 1983; Landau, 1976), 
the size dependence of  the pseudo-critical temperature as a function of N 
is given by the shift exponent A as 

T~(N)~(bN-'~ + I)T~ 
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where A = l / u ,  and u=0.735+0.015 from high-temperature series 
expansions. Therefore, the extrapolation to infinite size is done by fitting 
Tc(N) to a linear function of N -136. The results are shown in Figure 3, 
where an estimation of standard deviation is given by the error bars. The 
extrapolated values for the fixed-cutoff and the spin-wave models are 
Tc(~, FIXED) = 1.53 • and T~(~, SPIN) = 1.68+0.02, in units of J/kB. 

Finite-size scaling theory gives the N dependence of M and X as 

l og (MN ~A,) =/3 log( t N  ~2 ) + const. 
(lo) 

l o g ( xTN  -v3) = - y  log( tN ~4) + const. 

with t =-I(1 - T)/Tc[. The Ag are determined by adjusting the magnetization 
and susceptibility data for different N so that they fall along the same 
magnetization and susceptibility log curves--their  values do not affect the 
critical exponents. The data for Mse~y(N, T) for T less than Tc(SPIN) are 
plotted in Figure 4. In Figure 5 XsP~N(N, T) is plotted for T above the 
estimated critical temperature. 
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The critical exponents for the infinite system are found by extrapolation. 
The exponent as a function of N is the slope of the straight line that best 
fits the log M or log X points in the region where the scaling relations are 
expected to hold. The log t ranges over which the straight-line fits are made 
and the quality of  the straight-line fits over this region both increase with N. 

The graphs for/3 and 3' are shown in Figures 6a and 6b. 
The critical behavior of  the Heisenberg ferromagnet, according to the 

theory I have developed and as calculated by the Monte Carlo method, is 
summarized in Table I. For comparison, I have also listed the values 
obtained from classical theory (S~oo) ,  mean-field theory, and high- 
temperature quantum mechanical series expansions (Rushbrooke et al., 
1974). The high-temperature expansions are considered to be the most 
accurate predictions. 

5. C O N C L U S I O N S  

The effects of spin statistics that cause the correct spin-wave distribution 
to differ from the Bose distribution are called kinematical interactions. The 
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spin-wave state space presented in I resolves spin-wave overcompleteness 
effects in the form of a new distribution function and thereby provides a 
partial solution 3 to the kinematical problem. 

In this paper  I have shown that a theory based on this improvement  
alone generates the correct value of the critical temperature and predicts 
the critical exponents for the magnetization and susceptibility to within a 

Table L Compar ison of Different Predicted Values of  Critical Temperature and Critical 
Indices 

Noninteracting models 

Flat Spin-wave 
Classical Mean field High-temperature series cutoff cutoff 

y 1.405 1.00 1.43• 4.1 :i:0.2 3.3• 
/3 0.365+0.035 0.50 0.385+0.025 0.53• 0.63• 
T c 2.89+0.02 3 1.68• 1.53+0.02 1.68• 

3Spin-wave nonorthogonali ty is one of two parts of  the kinematical problem. Its effects are 
separate from that of  establishing a complete state space and computing the effects of  particle 
interaction. It is not included in the present spin distribution, but can be included within the 
formalism of thermal perturbation theory (Stoller, 1985). 
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factor  of  2. The differences between the exponents  calculated in the noninter-  
acting model  and those expected in the full theory are due either to the 
effects o f  spin-wave interaction, 4 or spin-wave nonorthogonal i ty .  

Al though one must  conclude that free-spin-wave theory by itself does 
not describe the critical p h e n o m e n a  of  the Heisenberg ferromagnet  as well 
as existing theories, these predictions may rapidly improve with the addi t ion 
o f  the particle interactions o f  first-order per turbat ion theory. 5 

A P P E N D I X .  I M P L E M E N T A T I O N  OF T H E  M O N T E  
C A R L O  A L G O R I T H M  

Two features o f  the Monte  Carlo work that have not yet been discussed 
include, first, a technique that  exploits the symmetry  o f  the system to reduce 
the state space and speed up program execution, and second, the 
implementat ion o f  the nonlocal  cutoff. The use o f  symmetry properties to 
reduce the size o f  the state space can be applied generally and is discussed 
in detail. 

In  such cases where the weighting funct ion does not depend on the 
signs o f  the wavenumbers  o f  the componen t  spin waves it is possible to 
reduce the state space to wavenumbers  in the first octant  of  k space, i.e., 
to states composed  of  spin waves at wavenumbers  k for  which k x, k y, and 
k z are each either positive or zero. As a result o f  reducing the number  of  
parameters  that  must  be sampled,  the simulat ion converges more  rapidly. 

Cons ider  the symmetry  properties o f  the state space. The energy is 
linear in its components :  E ( ~ { k l ,  k 2 , . . . ,  k,}) = ~ k  Dk((I))Ek, where E k : 

e(kX)+e(kY)+e(kZ), and e (k  i) is symmetric  about  ki=O. Given three 
positive wavenumbers ,  k x, k y and k z, there are eight ways they can be 
assigned plus and minus signs. Each set o f  signs specifies a three-dimensional  
wavenumber  in one o f  eight octants in parameter  space. Because e(k i) is 
symmetric,  the points ( + k  x, •  y, +k  z) in different octants are degenerate, 
The magnetizat ion and susceptibility are also symmetric  about  k~ = 0 and 
so are also degenerate in these octants. This symmetry is exploited by 
restricting the Monte  Carlo simulation to the approximate ly  ( N / 2 )  3 
wavenumbers  in the first octant  where k x - 0, k y -> 0, k z -> 0. This reduct ion 
must be accompanied  by changes in the updat ing  algori thm to account  for 
this degeneracy in order  that the simulation retain informat ion about  full 
system. 

4Within the context of renormalization group we have the assertion that all types of interactions 
within the same universality class generate the same critical exponents. The current statement 
is not in contradiction with this, because free and interacting spin-wave theories are in different 
universality classes. 

5Because the propagator is the thermal expectation value of the number operator, we are 
assured that it remains finite throughout the critical region and can thus be used for perturba- 
tion theory. 



Critical Behavior of Noninteracting Spin Waves 819 

The difference between working in the full, eight-octant space and the 
one-octant space is the number of ways signs can be assigned wavenumber 
components. Consider a single excitation state. There is only one state at 
k x = k y = k z = 0; it is the state that lies at the corners of the eight octants. 
For k x = k y = O, k z ~ O, there are two states, depending on the sign of kZ; 
these states lie along the edges of the octants. For k x= 0, k y r O, k ~ r  0 
there are four ways to choose the signs, and if none of the ki equals zero, 
then there are eight states. The number of components of k that are zero 
wilt be called the class of k. The class of any point in k space is therefore 
either 0, 1, 2, or 3. 

The situation for a two-excitation state is more complicated. In this 
case each of the excitations can be assigned in either of the four possible 
classes. If  both of the excitations are of class zero, then there are 28 ways 
the two excitations can be arranged in the eight octants. The number of 
ways that excitations of  fixed wavenumbers can be distributed in the eight 
octants is called the wavenumber degeneracy of the state, or simply the 
degeneracy. Given a general, m-excitation state with n(k) excitations at 
each k, the degeneracy of  the whole is given by @07), where 

@(rT) = I-[ D(n(k))  (A.1) 
k 

D(n(k))  is the degeneracy associated with each occupation number: 

(1 if k i sc lass0 ,  

n(k) if k i s c l a s s l  

D ( n ( k ) ) = ,  (n (k~+3) -  -" - if k i sc l a s s2  (A.2) 

Large systems mostly contain points of class 0, which means they have 
a vanishing number of degrees of freedom at zero wavenumber. In the 
thermodynamic limit the distinction between the multiplicity of various 
classes is unnecessary. However, because I will extrapolate to this limit 
using finite-size scaling, I have chosen to preserve the correct finite-size 
behavior. 

By limiting the trace over spin-wave states to the first octant we obtain 
a new form for the thermal expectation value {fi0t~ : 

Z' (A(~)}@(t~(cP)) e -13E('v) 

( / i } .  - (| Z' @(r~(cP)) e -~E(*) (h.3) 
((P) 
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where the primes limit the summations to states in the first octant. In 
transcribing equation (A.3) into the Monte Carlo scheme, the multiplicity 
~(r~) is taken as part of the weighting function W(vi((I))). From equation 
(4) the new expression for the acceptance probability is 

N(r~(~j)) exp[-/3E(r~j)]] (A.4) 
P~.~j = rain 1, ~ ( r~ (~ ) )  exp[-/3E(rTi)]J 

~(rT(~j)) requires lengthy computation. However, @(rT(~j)) itself is not 
needed, only the ratio ~ ( n ( ~ J ) ) / ~ ( n ( ~ i ) )  is used. Since the occupation 
numbers at each k are updated independently, any given state ~ and the 
next state ~j  in the underlying Markov chain differ only by the occupation 
numbers at a single wavenumber, say ko. According to (A.1), the degeneracy 
ratio is then given by 

~ (rT(qbj)) _ D(n(ko)j) (A.5) 
@ (r~(~,)) D(n(ko),) 

where n(ko)~ and n(ko)j refer to the old and new occupation numbers at 
ko. The end result is that I can compute the Monte Carlo average for an 
N 3 system by computing the sum over a sequence of states generated in 
an ( N /2 )  3 system. Unfortunately, this saving of  a factor of eight in the size 
of  the system does not translate into an eightfold increase in speed--rather,  
the saving is about a factor of three. 

The reason for this has to do with sampling efficiency. The problem is 
that by altering the weighting according to (A.4), the acceptance probability 
for going from one configuration to another is no longer determined by 
energy differences alone. There is now a higher probability of making the 
transition from a state of low energy to one of higher energy just because 
the higher energy state has many more ways it can be obtained. Similarly, 
where the original implementation of equation (4) might have moved into 
a region of representatively low energy in some number of steps, the present 
realization will take longer to move to lower energies because lower energy 
states effectively occupy a smaller region of phase space and, in a sense, 
are harder to find. 

This means that part of the movement of the simulation through 
parameter space is now being determined by the geometry of the space 
without regard to energy. In the limit that sampling is determined by 
geometry alone the energy difference between states is not taken into 
account. In such a case state-space sums are obtained by a random choice 
of states. Such random sampling is horrendously inefficient. Historically, it 
was only through the inclusion of a "drift" toward more important regions 
of phase space, achieved through the introduction of the energy-dependent 
weighting, that the Monte Carlo method became useful. 
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Since the modification of equation (A.4) is a step toward geometrically 
determined sampling, its effect is to erode the efficiency of the original 
algorithm. As a result, some of the speed gained by going to a smaller 
system is lost in less efficient sampling. 

The situation can also be described by saying that the convergence of 
the Monte Carlo simulation is strongly dependent on the form of tile 
weighting function. A smooth, steep gradient in phase space speeds up 
convergence. The weight function of (A.4) has a more gradual gradient 
than that of equation (4) and the simulation converges more slowly as a 
result. 

Next consider the implementation of the nonlocal expression of the 
energy given by (9). Nonlocality in the energy means that the energy 
associated with one location in k space is a function of the occupation 
numbers at all other regions of k space. There are two choices in how to 
handle this situation numerically. One either programs the computer to 
review the whole configuration every time the occupation number at one 
site is changed, which takes order N d operations per site, or one writes 
code that records the relevant global variables each time the state is modified, 
which takes a constant number of operations. This latter choice keeps 
continuous track of global properties and is clearly the method of choice 
when the relevant global parameters are sufficiently few in number. 

In the fixed-cutoff model it is a simple matter to keep track of the total 
occupation number m through the updating process. Given the occupation 
number at k in the present state, ni(k), a new occupation number nj(k) is 
generated in the underlying Markov chain according to the scheme of 
equation (5). The program tests to see if nj(k) is greater than zero and less 
than (N3 /2 ) - - i f  not, the state is immediately rejected. If the state meets 
this condition, the quantity Aj~ -= nj (k )  - n i (k )  is computed to give the new 
total occupation number Mj =Mi+Aji ,  which also must be greater than 
zero and less than N 3 / 2 .  If  this condition is satisfied, the energy of the 
state is finite. The program proceeds to accept or reject the configuration 
according to the standard algorithm [with the weights given by (A.4)]. 

Implementation of the m-dependent cutoff is more complicated (m is 
the number of excitations). Here one has the additional constraint that for 
each excitation added to the system the number of accessible k-space points 
must decrease by one (cf. I). Phase-space points are removed from the 
edges of the first Brillouin zone in accordance with the ansatz of equation 
(3). In the simulation restricted to the first octant of k space, each point k 
satisfying k x, k y, k ~ ~ 0 represents eight points in the original k-space. To 
implement the m-dependent reduction, I require that one point in the first 
octant of k space become inaccessible (or completely vacant) for every 
eight excitations added to the system. This is done by first defining a fixed 
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set of k-space points {k} = k~, k2, �9 �9 �9 (the actual choice of this set will be 
described below). For each point in {k} there is a number mmax(ki) which 
indicates the maximum total number of spin waves beyond which the 
occupation number at k~ must go to zero. As one k-space point becomes 
inaccessible for every eight excitations, the values of mma• for k~ = k~, 
k2, k3 , . . ,  are 8, 16, 2 4 , . . . .  Since the total number of spin waves lies 
between 0 and N3/2, the set {k} contains N3/16 elements. 

To realize the state-space conditions in the updating scheme, I include 
in the weight W(qb) for a state ~b, given in equation (A.4), an exponential 
damping factor F, 

where 

w(a,)--, W(~)F 

r is a positive integer, m(qb) is the total number of excitations, and 
n(ki) is the occupation number at wavenumber ki in state qb. When 
m(dp)rn(ki) is much less than mma• the damping factor 
exp{-[m(~)/mmax(ki)]rn(k~)} is close to 1 and the factor has no effect. 
When m(~)rn(k~) is greater than mma• the damping factor inhibits such 
a state from being accepted. Thus, the factor F works to eliminate from 
the Monte Carlo average states with m(dP)/mmax(k~)> 1 and n(k~)> 0. 

In the limit that r ~ ~ ,  F provides a sharp, density-dependent cutoff 
that vanishes whenever m(dP)/mmax(ki) > 1 and n(ki) -> 1, and goes to one 
for m(49)/rn~,~(ki) < 1 and n(ki) finite. In this limit F reproduces the cutoff 
scheme of equation (3). 

The thermodynamic behavior must not depend on the cutoff scheme. 
By varying r between 1 and 16, I have tested the sensitivity of the results 
to different cutoff schemes and found no significant effects. This implies 
that at wavenumbers k~ ~ {k}, for temperatures in the critical region, n(k~) 
generally takes the value 0 or 1. One might expect that the best results 
would be obtained by setting r to some very large value, but this leads to 
ergodic problems. 

An ergodic problem in a Monte Carlo simulation occurs when the 
simulation tends to get stuck in certain regions of the phase space. These 
problem regions of quasistability prevent the simulation from taking a path 
through phase space that is representative of the thermal average. The 
general result is that convergence is slow and erratic, and that the answers 
are often untrustworthy. 

The reason that discretely changing potentials, such as those that one 
obtains by taking r ~ ~ ,  give rise to ergodic problems is that the simulation 
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only senses a sharp boundary  when the boundary is contacted. Without a 
relatively long-range potential gradient, the simulation can only move away 
from the boundary  by random diffusion. When modeling a system with a 
multidimensional potential surface, such as in the present case, a sharp 
cutoff, as suggested by equation (3), makes it easy for the simulation to 
wander into a multidimensional corner. Without a potential gradient to lead 
the simulation out of these corners, the simulation must find its way out 
by simple random sampling. In this regard, a finite value of r provides a 
"soft damping"  in the sense that it allows some modes violating the restricted 
state-space condition to be accepted, and forces other modes that do not 
violate the condition to be rejected. This smooths the sharp boundaries of  
the original potential. 

Returning to the implementat ion of the state-space restrictions, recall 
that the updating scheme I use changes n(k) for one value of k at a time. 
The ratio of  the damping factor of  a new state ~ '  to that of  an old state qb 
is then given by the ratio 

F' exp({[m(~)+A]/mmax(ki)}r[n(k,)+A]) 
F exp{[ m (qb)/mmax(k i ) Jr n (k,)} 

(A.6) 

where A = n'(ki) - n(k/). 
Next consider the choice of  the wavenumbers in the set {k} for which 

the values of  rnma~(ki) are finite. In order to simplify the combinatorics, I 
choose {k} such that wave numbers k e {k} have all nonzero components.  
According to the results obtained in I, there is a large amount of  freedom 
in how the state space may be reduced. I choose {k} to consist of  the cube 
of k-space points at the outer corner of  the first octant, as shown in Figure 
7. This is an approximation to the cutoff scheme given by equation (3). 

Fig. 7. The cube of points in the first octant of k 
space that becomes depleted of excitations as a 
function of increasing number of spin waves. 

k 3 

N / 2  

; .-'"" N /2  
i , j  

k2 
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The prescription for assigning mmax(ki) values is as follows. Beginning 
at the outermost point in the Brillouin zone, the point at k =  
(N/2, N/2, N/2), and moving inward each wavenumber is assigned one 
of the increasing values mma x = 8, 16, 2 4 , . . . .  Assignments continue to be 
made until mmax(ki) > N3/2 for some ki. The remaining wavenumbers for 
which no assignment of mmax(ki) has been made are distinguished in the 
computer program by a flag or marker. When the computer updates a value 
of k~ for which there is no value of mmax(ki) ,  it acts as if mmax(ki) were 
infinite by automatically setting F'/F = 1. At those wavenumbers for which 
mmax(ki) is defined and finite, the weighting as given by equations (A.4) 
and (A.6) is computed to determine the transition probability. 

The use of a cutoff scheme other than that given in equation (3) is 
justified because there is no unique way of reducing an overcomplete space. 
The advantages of equation (3) are its simple form, its easily visualized 
effect, and its apparent property of eliminating the correct number of states 
from each of the subspaces of fixed total wavenumber, as discussed in I. 
It is replaced by the scheme illustrated in Figure 7 in the interests of 
computational efficiency and on the assumption that errors would be insig- 
nificant in the calculation of bulk behavior. An indirect test of this assump- 
tion was done using the critical theory of Bose condensation. In II it was 
shown that at low temperatures and in the thermodynamic limit the present 
spin-wave distribution function is identical to a Bose distribution. Using a 
Bose distribution function with a chemical potential (i.e., for a system of 
fixed boson density), it is easy to impose k-space cutoffs and observe their 
effect on the critical behavior of the boson system. It is found that the 
cutoffs specified by equation (3) and Figure 7 result in the same critical 
temperatures and/3  exponents, 1.95 and 1.01, respectively. This provides 
only indirect support for the equivalence of  the cutoff schemes of equation 
(3) and Figure 7 because the spin-wave distribution is not bosonic outside 
the range of low temperatures. 

The last topic to be considered is the actual choice of parameters used 
to tune the Monte Carlo algorithm, as touched on briefly in Section 2.2. 
There are three parameters that are adjusted to optimize the computer 
simulation. The first is the maximum change in the occupation number at 
any k value, referred to as the step width D. By making D small, one 
ensures that, as long as one is not too close to the state-space boundary, 
the energy of an updated state is close to the energy of the original state. 
This means that even if there is an energy increase, it will be small and the 
acceptance probability will be high. Making the step length small allows 
the simulation to climb over potential barriers and test the detailed structure 
of the state space, but it also makes it difficult for the simulation to cover 
large state-space distances. By making D large, one ensures that newly 
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constructed states in the underlying Markov chain are only weakly correlated 
with the original state. However, in this case it is likely that higher energy 
states will be much higher in energy and will have a low acceptance 
probability. As a result, one may find that the simulation quickly moves 
into regions of low energy and then cannot move away. The value chosen 
for D is such that about half of the new states generated in the underlying 
Markov chain are accepted. 

The second parameter at one's disposal is the number of updates 
between each state that is included in the sum. That is, by choosing some 
integer y > 1, one can calculate the Monte Carlo sum as 

1 M 
S ~ i~1 F(qbvi) (1.7) 

where ~v~ is the (yi)th state in the Monte Carlo sequence. 
The third parameter is p, the number of initial states in the Monte 

Carlo sequence that are excluded because they are correlated with the 
arbitrarily chosen initial state. It is clear that if one includes all states 
generated from an initial seed, and one only generates a small number of 
states for the whole simulation, then the answer one obtains will have more 
to do with the state one started with than the actual state-space average. 
The system is said to have equilibrated when the states in the sequence are 
no longer correlated with the initial state. The final form of the Monte Carlo 
sum is 

M 

s ~ !  2 F(* ~'+~ 
mi=l 

The results presented here generally used simulations in which every 
fourth state in the Monte Carlo sequence (y = 4) was counted. Simulations 
were allowed to equilibrate for 4000-12,000 cycles before counting states 
(p=1000-4000),  and generally contained 10,000 configurations ( M =  
10,000), except at temperatures within 15% of T~(N), where they might 
contain up to 70,000 configurations. This was done both because the error 
bars were larger in this region and because high accuracy was needed to 
identify the susceptibility peaks that define T~(N). The susceptibility near 
To(N)  of the largest systems of 133 and 153 sites was found to an estimated 
2.5% accuracy, while that of systems with fewer than 93 sites was found to 
within 1%. Computation times ran between 5 x 10 -6 and 3 x 10 -s sec per 
k-site update in both the fixed-cutoff and spin-wave models. 
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